Shri Shankaracharya Institute of Professional Management \& Technology

 Department of Civil Engineering Class Test - ISession: July-Dec, 2023Month - November
SSIPMT

Semester - 5th Subject - Transportation EngineeringCode - C020514(020)
Time Allowed: 2 hrs. Max Marks: 40
Note: - In Part I \& II, Question A is compulsory and attempt any two from B,C \& D.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
Part I				
A.	Define gradient. Describe different types of gradient.	[4]	Understand	CO 1
B.	Calculate the safe stopping sight distance while travelling at a speed of 80 kmph on an upward gradient of 2 percent. Make suitable assumptions.	[8]	Apply	CO 1
C.	Design the rate of super elevation for a horizontal highway curve of radius 500 m and speed 100 kmph .	[8]	Apply	CO1
D.	Calculate the safe overtaking sight distance for a design speed of 100 kmph . Assume all other data suitably.	[8]	Apply	CO1
Part II				
A.	Describe sleepers and its function.	[4]	Understand	CO4
B.	Briefly explain the terms : Fish Plate, Coning of wheel, Types of rail	[8]	Understand	CO 4
C.	Describe with neat sketches various types of rail. Write its merits and demerits.	[8]	Understand	CO 4
D.	Draw the diagram of rail cross-section and make the detailed description of each components used in railway cross section.	[8]	Understand	CO4

Shri Shankaracharya Institute of Professional Management \&Technology, Raipur
 Department of Civil Engineering

Class Test - I Session: July- Dec, 2023 Month - November
Semester $-5^{\text {th }}$ Subject - Geotechnical Engineering Sub. Code -C020513(020)
Time Allowed: $\mathbf{2}$ hrs. Max Marks: $\mathbf{4 0}$
Note: - In Part I \& II, Question A is compulsory and attempt any two from $B, C \& D$.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
Part I				
A.	The mass specific gravity (apparent specific gravity) of a soil equals 1.64. The specific gravity of solids is 2.70 . Determine the voids ratio under the assumption that the soil is perfectly dry. What would be the voids ratio, if the sample is assumed to have a water content of 8% ?	[4]	Analyze	CO1
B.	An embankment, having total volume of $2000 \mathrm{~m}^{3}$ is to be constructed having a bulk density of $1.98 \mathrm{~g} / \mathrm{cm}^{3}$ and a placement water content of 18%. The soil is to be obtained either from borrow area A or borrow area B, which have voids ratio of 0.78 and 0.69 , respectively and water content of 16% and 12%, respectively. Taking $G=2.66$, for both the soils, Evaluate the volume of soil required to be excavated from each of the areas. If the cost of excavation is Rs. 35 per 3 in each area, but cost of transportation is Rs. 32 and Rs. 36 per m^{3} from areas A and B respectively, which of the borrow areas is more economical?	[8]	Evaluate	$\mathrm{CO1}$
C.	Explain IS Soil Classification system. Mention the equation and significance of A-line in plasticity chart.	[8]	Understand	$\mathrm{CO1}$
D.	Derive the functional relationship of followings: (i) Relation between γ, G, e, and S . (ii) Relation between $\gamma_{\mathrm{d}}, \mathrm{G}, \mathrm{w}, \mathrm{n}_{\mathrm{a}}$.	[8]	Analyze	$\mathrm{CO1}$
Part II				
A.	(i) Explain various types of samplers.	[4]	Understand	CO 5
B.	An undisturbed soil sample has a volume of $100 \mathrm{~cm}^{3}$ and mass of 195 gm . on oven drying for 24 hours; the mass is reduced to 163 gm . If the specific gravity of grains is 2.65 , evaluate (i) 'water content (ii) void ratio, and (iii) degree of saturation of soil.	[8]	Evaluate	CO1
C.	Define Consistency of soil and various atterberg's limit with neat sketches.	[8]	Understand	$\mathrm{CO1}$
D.	Describe various methods of site exploration and soil investigation.	[8]	Understand	CO 5

Semester - $5^{\text {th }}$ Subject - SED - I, Code - C020511(020)
Time Allowed: 2 hrs Max Marks: 40
Note: -Question (a) is compulsory.Attempt any two from b, cand d form Part I and Part II.

$\begin{gathered} 0 \\ \mathrm{No} \end{gathered}$	Questions	Marks	Levels of Bloom's taxonomy	COs
Part- I				
(a)	Draw the stress-strain curves of concrete and steel.	[4]	Analyze	CO1
(b)	Evaluate the moment of resistance of R.C.C beam $350 \times 550 \mathrm{~mm}$ (effective) and is reinforced with 3 bars of 20 mm diameter. The Permissible stress in concrete and steel are $7 \mathrm{~N} / \mathrm{mm}^{2}$ and $230 \mathrm{~N} / \mathrm{mm}^{2} . \mathrm{m}=13.33$	[8]	Evaluate	COI
(c)	Evaluate the stress set up in steel and concrete from following data $\begin{aligned} & b=400 \\ & d=600 \end{aligned}$ $4-25 \mathrm{~mm}$ diameter $\mathrm{m}=13.33$ $\text { B. } \mathrm{M} .=150 \mathrm{kNm}$	[8]	Evaluate	$\mathrm{CO1}$
(d)	A concrete beam $400 \mathrm{~mm} \times 600 \mathrm{~mm}$ effective is reinforced with $4-25 \mathrm{~mm} Q$ bars on tension side and $4-20 \mathrm{~mm} \otimes$ bars on compression side. Evaluate moment of resistance of the beam. Use M20 concrete and Fe 415 steel. Take effective cover to the centre of compressive reinforcement as 40 mm and $\mathrm{m}=$ 13.33.	[8]	Evaluate	CO1
13.33. Part- II				
(a)	Draw the Block stress parameter of Singly and Doubly Reinforced Beam.	[4]	Analyze	CO 2
(b)	Evaluate the moment of resistance of beam having dimension as $300 \times 550 \mathrm{~mm}$ (effective). The beam is reinforced with $1963 \mathrm{~mm}^{2}$ of steel in the tension zone. Use M20 concrete and Fe 415 steel.	[8]	Evaluate	CO2
(c)	Design the beam for flexure. An R.C.C beam is required to carry a uniformly distributed load $25 \mathrm{kN} / \mathrm{m}$ inclusive of its weight. The effective span of the beam is 8 m . Use M30 and Fe 415 Steel	[8]	Create	CO2
(d)	Design rectangular beam $230 \mathrm{~mm} \times 600 \mathrm{~mm}$ over an effective span of 5 m . The Superimposed load on the beam in $50 \mathrm{kN} / \mathrm{m}$. Effective cover to reinforcement is taken as 50 mm . Use M20 concrete and Fe 415 steel.	[8]	Create	CO2

Shri Shankaracharya Institute of Professional Management \& Technology, Raipur Department of Civil Engineering

SSIPMT RAIPUR

Semester - $5^{\text {th }}$

Class Test-I Session: Jul - Dec, 2023 Month - November

Note: - In every part Question A is compulsory, Attempt any two Questions from B,C and D. Levels of
Q.
No.

Subject - Structural Analysis-II

Code - C020531(020)
Time Allowed: 2 hrs Max Marks: 40
Note: - In every part Question A is compulsory, Attempt any two Questions from B,C and . Marks $\begin{gathered}\text { Bloom's } \\ \text { taxonomy }\end{gathered}$ \ldots Part-I
A.
I. Discuss Degree of freedom.
II. Discuss Moment Curvature Relationship.

Analyze the continuous beam as shown in figure, using three moment equation and if support B sinks by 10 mm under the given load. $\mathrm{E}=15 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{I}=4 \times 10^{9} \mathrm{~mm}^{4}$.

B Draw shear force and Bending moment diagram.

For a two span beam shown in figure, Find the support moments and plot the Bending moment diagram. Use three moment theorem

Analyze the continuous beam as shown in figure, using three moment equation and Draw the SFD and BMD. Take EI is constant. Take $\mathrm{E}=15 \mathrm{kN} / \mathrm{mm}^{2}$. Moment of inertia is constant throughout and is equal to $5 \times 10^{9} \mathrm{~mm}^{4}$.

D

Part-II				
A	i. Discuss the Betti's Theorem. ii. Discuss Castigliano's theorem of minimum strain Energy.	[04]	Understand	CO 2
B	Analyse the portal frame shown in figure, using method of minimum strain energy and plot the bending moment diagram. EI is constant.	[08]	Analyse	CO 2

